New Run II Results from the DØ Experiment at the

Tevatron Accelerator

C. Zeitnitz

University of Mainz

for the

DØ Collaboration

Content

- The Run II at the Tevatron Accelerator
- The DØ Experiment
- First QCD Results
- First Results from the Forward-Proton-Detector
- Top-Quark Cross-Section
- Summary and Outlook

The Run II at the Tevatron

FERMILAB'S ACCELERATOR CHAIN

- New Main injector ring
- Tevatron: ~6km circumference
- Proton-Anti-Proton with ~1 TeV per beam (cms=1.96 TeV)
- 36 bunches per beam
- Collision rate: 7.5MHz396ns bunch distance
- Two experiments: CDF and DØ
- History:

Built: 1984-92

"Run I" @ 1.8TeV: 1992-96

Upgrade: '96 – 2001

"Run II" started March 2001

Tevatron: Landscape

Tevatron: Performance

Collider Run II Peak Luminosity

▲ Peak Luminosity • Peak Lum 20X Average

Luminosity:

$$L = f \cdot \frac{n_1 n_2}{4\pi\sigma_1 \sigma_2}$$

n₁: number of protons per bunch

n₂: number of anti-protons per bunch

 σ_1 und σ_2 : transverse bunch size

f: Frequency (average 7,5MHz)

Tevatron: Performance (2)

Collider Run II Integrated Luminosity

Delivered Luminosity: ~500pb⁻¹

Produktion Cross Section

proton - (anti)proton cross sections

The DØ Experiment

- 650 physicists from 19 nations
- For Run II an extensive upgrade of the detector
 - superconducting solonoid (2T)
 - scintillating fiber tracker
 - silicon vertex detector
 - new read out electronics
 - new data acquisition system

DØ Detector: Setup

DØ Forward Proton Detector

- 9 momentum spectrometers composed of 18 Roman Pots
- Protons and anti-proton are tracked utilizing scintillating fiber detectors
- Very close to beam line (down to ~6mm)
- Reconstructed track is used to calculate momentum fraction and scattering angle
- Used to measure elastic and diffractive events
- Covered t region: 0.6 < t < 4.5 GeV²
- Resolution substantially better than standard rapidity gap method

DØ: available data

- ~340 pb⁻¹ on tape as of last week
- Not all data under optimal condidtions e.g. missing detector components
- Available for analysis: ~250pb⁻¹
- Most current results use between 140 and 200pb⁻¹

DØ: Triggering on Jets

- Jet selection: Cone algorithm
 with radius R=0.7 in η and Φ
- Different p_⊤ trigger thresholds
- Understanding of trigger turnons important
- Trigger acts on "raw" energies
- Jet Energy Scale corrections substancial!
- Error on Energy Scale still dominant systematic error!

The Biggest Event

Di-Jet Mass: M_{JJ}=1206 GeV/c²

■ Highest p_T Jet: p_T=616 GeV/c²

mE_t: 72.1 phi_t: 223 deg

QCD: Inclusive Jet Cross-Section

- High p_T Jets and large M_{JJ} sensitive to:
 - Parton Density Functions
 - strong coupling constant α_{S} Test of NLO perturbative QCD
- Deviations from predictions could indicate new physics
- Measurement in three different rapidity bins
- Theoretical prediction: NLO pQCD calculation utilizing JETRAD and CTEQ6M PDFs
- Main systematic error source: jet energy scale

QCD: Di-Jet Cross-Section

- Jets selected in the central detector region $|\eta| < 0.5$
- Jets are merged if overlapping within R=0.7 cone with 50% of lower p_T jet in overlap region
- Current experimental systematic errors still dominating completely

QCD: azimuthal decorrelation

Leading order pQCD

3 jets in pQCD

- Measure angle between leading and next-to-leading jet
- ΔΦ is sensitive to jet formation without having to measure 3rd jet directly
- Sensitive to higher order QCD
- p_T of radiated gluon anti-correlated with $\Delta\Phi$ ($p_T=0 \rightarrow \Delta\Phi=\pi$)

QCD: azimuthal decorrelation (2)

- Jet selection:
 - $|\eta|$ <0.5 (central detector region)
 - $p_{T} > 40 \text{GeV/c}$
- As expected: LO pQCD does not describe the data
 - Pole at $\Delta \Phi = \pi$
 - max. $\Delta \Phi = 2\pi/3$
- Reasonable agreement with NLO pQCD

- Pythia tuning to other pp data fits well
- Pythia spectrum sensitive to amount of ISR

First Look at FPD Data

- Measure scattered proton and anti-proton in Forward-Proton-Spectrometer
- Determine momentum transfer t and $\xi=1-x_p$ (where x_p is the momentum fraction of the proton)
- Separate elastic and diffractive events
- Elastic events centered at ξ=0 resolution 0.017
- Larger values correspond to diffractive events used cut at 0.03

First FPD data (2)

Distributions of the momentum transfer |t|

Diffractive events

Elastic events

First FPD data (3)

- Comparison of elastic proton antiproton scattering at different √s
- Experiments: ISR, UA4 and E710
- DØ points normalized to E710 (1800 GeV)
- Model: M. Bloch Phys. Rev D41(1990) 978
- Lot more to come in the future!
 Diffractive W/Z production
 Diffractive jet production

Scale factor between curves: 10⁻²

Top Quark Physics

15% of $\sigma(tt)$

Top cross-section and p_T distribution

- Test of pQCD

- Top Quark mass
 - consistency of electro-weak model
 - Higgs mass constraints from loop corrections
- Top production from gluon splitting and quarkgluon fusion
- Theoretical production cross-section: ~6.7pb (Cacciari '03)

85% of $\sigma(tt)$

Top Decay Signature

Decay of top-quark into b-quarks + W

Tagging of events: find secondary b-decay vertex

44% pure hadronic decays (difficult)

5% pure leptonic (e,μ) (very clean)

Top: Pure leptonic decay

- Select events with two leptons ee, μμ or eμ
- Two neutrinos lead to significant missing E_T missing E_T > 25GeV
- Expect two b-quark jets

- Expected signal for 6.7pb: 6 events
- Expected background: 4.8 events mainly Z and fakes
- Observed (140-150pb⁻¹): 17 events

$$\sigma(t\bar{t}) = 14.3^{+5.1}_{-4.3}(stat)^{+2.6}_{-1.9}(syst) \pm 0.9(lumi)$$

Top: pure leptonic decays (2)

- Evolution of cross section with √s
- Excess for Run II, but still consistent within errors Wait for more data!

Top: Pure hadronic decay

- Background from QCD processes 3-4 orders of magnitude larger!!
- Tagging of b-quark decays via secondary vertex not sufficient
- Neural network analysis utilized to obtain reasonable signal/background ratio
- Data set: 162pb⁻¹
- Observed number of events: 220
- Expected background: 186±13
- Result: $\sigma(t\bar{t}) = 7.7^{+3.4}_{-3.3}(stat)^{+4.7}_{-3.8}(syst) \pm 0.5(lumi)$

Top Cross-Section

- More analyses: Lepton+Jets
- Results consistent with SM expectations
- Still statistically limited, but have to work very soon (and hard) on systematics
 - Jet Energy Scale
 - Jet identification
 - Top Mass
- Twice the statistics available: Expect new results this summer

Summary and Outlook

- First QCD results for Run II available
 - constistent with NLO calculations
 - still systematically limited
- top quark cross-section
 - results for all channels
 - consistent with SM prediction
 - still statistically limited
- top quark mass
 - re-analysis of Run I data lead to shift of Higgs mass prediction of electro-weak fit by 30GeV
 - expect first Run II results soon
- What will come for the summer conferences?
 - inclusive b-jet cross section
 - diffractive Z production
 - diffractive jet production
 - updated top cross section

THE END

New Top Mass from Run I

- Run I data of lepton+jets events re-analysed with new method
 - event based weights derived from LO-Matrix element, PDFs and detector transfer function
 - background included into common likelihood function
- Old result from 1998:

$$M_{top} = 173.3 \pm 5.6_{stat} \pm 5.5_{syst} GeV/c^2$$

New result:

$$M_{top} = 180.1 \pm 3.6_{stat} \pm 4.0_{syst} \, GeV/c^2$$

- Statistical error reduced by 36%!
- Main systematic errors: jet energy scale

Top Mass: World average

New averaged top quark mass including the new measurement

- Shift of top mass by 1σ
 - Higgs mass from electro-weak fit increased by 30GeV/c²

Cone Algorithm

- Start from particles (calorimeter towers) as seeds for jets
- Create cone around each seed: $\Delta R = \sqrt{\eta^2 + \phi^2} < R_{cone}$
- Add all particles within given cone in η and Φ together (four-vectors)
- Iterate until stable solutions
- Use midpoints between solutions as additional seeds
- Re-iterate
- Reject jets below p_T cut

Diffractively produced W & Z

- Signature for diffractive events:
 Gap in η with (nearly) no energy
- Kinematics
 Four momentum transfer |t|

$$|t| = (p_f - p_i)^2$$
 p_i p_f
 $|t| \sim \theta^2 \text{ (scattering angle)}$

LO diffractive production of W

a) LO: $q\bar{q} \rightarrow W$

Hard diffractive jet production

Hard diffractive W production

Diffractively produced W & Z (2)

Diffractive W-production in Run I

- Event topology based on energy in the calorimeter
- Additional information from luminosity detector (2.3<η<4.3)

W/Z production cross section

X(3872) in J/Ψ $\pi^+\pi^-$

